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And all these papers are sealed with the seal of the Great Khan. The
procedure of issue is as formal and as authoritative as if they were made
of pure gold or silver. On each piece of money several specially appointed
o¢ cials write their names, each setting his own stamp. When it is completed
in due form, the chief of the o¢ cials deputed by the Khan dips in cinnabar
the seal or bull assigned to him and stamps it on the top of the piece of money
so that the shape of the seal in vermilion remains impressed upon it. And
then the money is authentic. And if anyone were to forge it, he would su¤er
the extreme penalty.

The travels of Marco Polo. (Translated by Ronald Latham, The Folio Society,
London 1968).
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0 Summary

Presently, the most menacing of all possible banknote forgeries is a screened
three or four colour reproduction in litho-o¤set. The moiré e¤ect might
provide an e¤ective defence against them. In this paper the moiré e¤ect is
treated with special reference to banknotes.
In the �rst part of the paper a geometrical introduction to the moiré

e¤ect is given. The case of two gratings of uniformly spaced straight rulings
is dealt with. In the second part a treatment based on symmetry and group
theory is presented. The main conclusions of the paper are collected in a
separate chapter. They are followed by a general procedure how to design an
e¤ective pattern which exhibits in combination with a forger�s printing screen
conspicuous moiré fringes. It is suggested to design such a pattern not in the
two-dimensional space of a banknote but in a transformed space, the spatial
frequency domain. The use of a computerized plotter, such as Coragraph,
could be of a great advantage. It is proposed to call such a pattern a �screen
trap�.
Finally, the simplest pattern for the occurrence of moiré fringes with

any symmetrical printing screen in any direction is developed. In the last
chapter a selection of examples is presented. They prove that a systematic,
mathematical treatment of the subject does not limit the scope for creativity,
but leaves room for the designer to follow his ideas.
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1 Introduction

Of old printers have been haunted by apparitions when reproducing photo-
graphs originally produced in autotype. A seemingly innocent autotypical
photograph reproduced with an equally seemingly innocent printers�screen
may be utterly spoiled by a pattern which seems to origin from nowhere.
These apparitions are commonly known as moiré fringes. As so often, this
nuisance also may be used to advantage after some thought. If brought about
deliberately, it seems to provide an excellent means to turn away intended
forgers from autotypical forgeries of banknotes, at the moment the most
menacing of all techniques. The traditional means by which banknotes are
protected against forgeries (eg, guilloches and photographically inseparable
colours) were developed in defence against other reproduction techniques and,
consequently, provide a very limited protection against coloured screened re-
productions in litho-o¤set. So, one has to look for additional means to �ll
this gap in the hedge against intended forgers. A possible solution may be
found in the moiré e¤ect, an interference e¤ect well-known in physics. It has
been applied already in our Dutch f 100-note with some success, as well as in
banknotes of other countries. It was felt, however, that the e¤ect could be
used more e¤ectively.
The �rst physicist who seems to have noticed the moiré e¤ect was Lord

Rayleigh in 1874. He mentioned it in a paper on the manufacture and theory
of di¤raction gratings [1]. By large, however, it seems to have escaped the
attention of physicists. Although Rayleigh suggested that �this phenomenon
might perhaps be made useful as a test�of the accuracy of ruling of di¤raction
gratings it was not until the �fties that its practicality in metrology was
realised. A paper by Oster and Nishijima from 1963 gives a few practical
suggestions [2].
Printers, though, were already aware of it at an early time. They tried

to avoid the e¤ect as best as they could when reproducing an autotypical
photograph. It was on instigation of Dr. O.A. Guinau of Messrs. Joh. En-
schedé en Zonen, printers to De Nederlandsche Bank, that Dr. D. Tollenaar,
a Dutch chemist, published a mathematical treatment speci�cally applied to
printing in 1945 [3]. Unfortunately, the complete text is available in Dutch
only; part of it only has been published in English [4]. It teaches the origin
of moiré fringes and how to avoid them. So to speak we have to make a
full turn now. We want to bring about moiré fringes deliberately and seek
a way to apply them to their full advantage in banknotes in order to scare
o¤ intended forgers. We propose to use the term �screen trap�for a design
with the desired properties.
This paper intends to provide the necessary theoretical background to de-
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signers of banknotes guiding their e¤orts towards an e¤ective design without
seriously limiting their scope. Proving this in chapter 10 some attractive
instances done by Messrs. Joh. Enschedé en Zonen are presented.
The paper is divided into two parts. In the �rst, chapters 2, 3 and 4,

a geometrical approach of the moiré e¤ect is given, not very di¢ cult to
understand. In the second part, chapters 5, 6, and 7, the subject is treated in
a less obvious way. It is based on group theory, a theory often used in physics
to describe symmetry e¤ects. Each chapter is followed by a set of conclusions.
The attentive reader will notice that often from the theoretician�s point of
view a conclusion is not su¢ ciently proved. I think this is acceptable as it is
not the purpose of my paper to present a rigid mathematical treatment. It
is merely intended to derive a workable set of rules how to apply the moiré
e¤ect in banknotes. The conclusions are summarized in chapter 8 to make
up a �cooking recipe�and sublimated into a general procedure how to invent
an e¤ective design, in which the use of a computerized plotter would come
in very handy. The simplest design which generates moiré fringes with any
printing screen in any direction is developed in chapter 9. Finally, chapter
10 presents the applications already mentioned.
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2 Two parallel gratings of di¤erent spacings

If two parallel gratings ruled with uniformly spaced straight lines are super-
imposed, a pattern of moiré fringes appears. In �gure 1 two such gratings are
drawn; for easy understanding they are drawn as if not fully overlapping. A
pattern of moiré fringes consists of alternately bright and dark fringes. The
cause of the phenomenon may be readily understood. If the dark rulings of
the gratings coincide, comparatively much light is re�ected by the white pa-
per and consequently these places appear bright. On the other hand, places
were the dark rulings are neatly arranged along each other, little light is
re�ected and consequently these places appear dark.

Figure 1. Two parallel gratings of di¤erent spacings. For easy
understanding the gratings are drawn as if only partly overlapping.

The place co-ordinate x be measured along the normal to both gratings.
Assume both gratings to coincide at x = 0. As will be seen this assumption
does not invalidate the generality of the argument. Now, if the �rst grating
has a spacing of a mm and the second grating a spacing of b mm, then for
any x we can always �nd two numbers m and n such that

x = m � a = n � b: (2.1)

It is impartial which of the two gratings is called the �rst and which is called
the second, so we may put that

a < b and m > n: (2.2)

The 0-th fringe is found if m = n = 0 and x0 = 0, the 1-st fringe is found if
jm1 � n1j = 1 and x1 = m1a = n1b, . . . , the p-th fringe is found if jmp � npj =
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p and xp = mpa = npb. It follows easily that the distance � between two
nearest bright (or dark) moiré fringes, to be called the fringe width, is

� = xp+1 � xp = (mp+1 �mp) a = (np+1 � np) b; (2.3)

if
jmp+1 � np+1j � jmp � npj = p+ 1� p = 1: (2.4)

Because m > n, it follows

mp+1 � np+1 �mp + np = 1; (2.5)

or
mp+1 �mp+1

a

b
�mp +mp

a

b
= 1; (2.6)

and thus

mp+1 �mp =
b

b� a: (2.7)

Substitution of (2.7) in (2.3) yields

� =
ab

b� a: (2.8)

Generally, printers prefer to use the number of lines per mm and not the
spacing of a grating. It is usual in physics to call this quantity the spatial
frequency of the grating expressed in cycles/mm, the dimension being mm�1.
So, if we substitute

� =
1

a
mm�1 and � =

1

b
mm�1; (2.9)

it then follows
� =

1

�� � : (2.10)

A favourable value of � might be in the order of 5mm, in which case

�� � = 0:2mm�1: (2.11)

Conclusion 2.1 The fringe width of the moiré pattern of two parallel grat-
ings is independent of the absolute value of the spatial frequencies of the
gratings; it depends merely on the di¤erence of both.

Conclusion 2.2 The spatial frequency of the moiré pattern of two parallel
gratings is equal to the di¤erence of the spatial frequencies of the gratings.

This result is well-known in electronics, where the e¤ect is called �aliasing�.

Conclusion 2.3 The spatial frequencies of both gratings may not di¤er too
much in order to obtain a suitably large fringe width, eg, a frequency di¤er-
ence of 0:2mm�1 produces a fringe width of 5mm.
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3 Two oblique gratings of equal spacing

In �gure 2 two oblique gratings of equal spacing are drawn. The lines along
which both gratings have minimum overlap are indicated by arrows. These

Figure 2. Two oblique gratings of equal spacing. The arrows indicate lines
of minimal overlap: bright moiré fringes.

Figure 3. Part of �gure 2 enlarged. The spacing of the gratings be amm,
the inter-ruling angle be � .

lines appear to the human eye by comparison as bright moiré fringes, whereas
in between dark moiré fringes are observed. In �gure 3 part of the previous
�gure is shown enlarged with all relevant angles and distances indicated. The
spacing of both rulings is again chosen as amm and the angle between both
as �. The fringe width is also indicated along the perpendicular of the moiré
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fringes. Now, it follows from simple trigonometric considerations that

� =
a

sin �
sin
1

2
(� � �) ; (3.1)

or

� = a
cos 1

2
�

sin �
: (3.2)

If � is su¢ ciently small, this expression may be approximated by

� =
a

�
: (3.3)

From the same �gure it follows that the direction of the fringes bisects the
external angle between the rulings of the gratings.
In �gure 2 there are other lines which also interconnect the crossing points

of the rulings. They are, of course, the other set of diagonals of the rhombus
formed by the rulings. It follows again that the fringe width �0 of this set is
given by

�0 =
a

sin �
sin
1

2
�: (3.4)

The direction of these fringes bisects the internal angle of the rulings of the
gratings.
So, we conclude that there are two sets of moiré fringes, perpendicular to

each other, one pair being manifest, the other being latent. Which of both
is manifest and which is latent depends on the contrasts. The human eye
does perceive the set of fringes with the highest contrast between bright and
dark fringes. If we look across the �gure in a scant direction the paper close
to the eye, we can observe the other set of fringes by the apparent change of
the fringe width and contrast.

Conclusion 3.1 The fringe width of the moiré pattern of two oblique grat-
ings with equal frequency depends on the frequency and inter-ruling angle. If
the inter-ruling angle is very small, the fringe width is inversely proportional
to the angle.
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4 General case: two oblique gratings of dif-
ferent spacings

Now we come to the general case of two oblique gratings of di¤erent spacings,
as shown in �gure 4. Let us call the spacing of the denser grating amm and
the spacing of the less dense grating bmm. If again the spatial frequencies
are denoted by Greek letters, then

�0 =
1

a
mm�1 �0 =

1

b
mm�1 (4.1)

where
a < b and � > �:

Figure 4. Two oblique gratings of di¤erent spacings. The arrows indicate
lines of minimal overlap: bright moiré fringes.

In �gure 5 the situation is given on a large scale. Both fringe widths are
called again � and �0. Upon some re�ection it follows from trigonometric
considerations that twice the area of one half of the rhombus is given by

� � p = �0 � q = ab

sin �
: (4.2)

It can be easily deducted that

p =
1

sin �

�
a2 + b2 � 2ab cos �

� 1
2 (4.3)

q =
1

sin �

�
a2 + b2 + 2ab cos �

� 1
2 :
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Figure 5. Part of �gure 4 enlarged. The spacing of the denser grating be
amm and the other bmm, the inter-ruling angle be �.

Substituting this in the previous formula yields

� =
ab

(a2 + b2 � 2ab cos �)
1
2

(4.4)

�0 =
ab

(a2 + b2 + 2ab cos �)
1
2

: (4.5)

If we put a = b in (4.4) and (4.5), we �nd after some computation the
expressions for � and �0 derived in the previous chapter, and, if we put � = 0
in (4.4), we �nd (2.8), as we ought to of course. Expression (4.4) is maximal
for small � and approximately equal frequencies.

Conclusion 4.1 The fringe width of the moiré pattern of two oblique grat-
ings with di¤erent frequencies depends on the frequencies and the inter-ruling
angle. It tends to a maximum for a very small inter-ruling angle and approx-
imately equal frequencies.

Up to now two attributes of the primary gratings were considered: the
frequencies and the inter-ruling angle. There is a third one which is as much
of importance. It is the contrast of the gratings between the dark and the
bright lines or rather the thickness of the gratings�rulings. They determine
the contrast in the moiré pattern. Clearly, if the dark or the bright lines
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of one grating are very thin, the contrast of the moiré fringes is small. The
maximum contrast will be found if dark and bright lines of each grating are
of equal thickness.

Conclusion 4.2 The contrast of the dark and bright moiré fringes in the
moiré pattern depends on the thickness of the primary gratings�rulings.

Conclusion 4.3 The maximum contrast in the moiré pattern will be found
if the dark and bright areas of each primary grating are equal.

What happens if three gratings of approximately equal frequency are
superimposed? As has been demonstrated in (4.4), two of them will produce
a moiré pattern with a fringe width considerably larger than the spacing of
the third grating. If now the third grating is superimposed, interference of
the third grating and the �rst moiré pattern will produce a second moiré
pattern, however with a fairly small fringe width. This means that the �rst
moiré pattern will not be disturbed too much by the third grating.

Conclusion 4.4 From the viewpoint of security it makes not much sense
incorporating easily perceptible moiré fringes as part of a banknote design.
The forger�s printing screen is not likely to produce large changes of the moiré
pattern.
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5 Symmetry of gratings and printing screens

Up to now we have spoken simply of �the� spatial frequency of a grating.
In fact, a grating does not have one spatial frequency but a whole range of
frequencies. Firstly, the frequency is direction dependent as shown in �gure
6. In the direction of the grating�s normal (' = 0) the spatial frequency is
�0, in another direction the spatial frequency is

�' = �0 cos'; (5.1)

if ' is the angle with the normal. However, this is not complete yet. Along

Figure 6. The angular dependency of the spatial frequency of a grating.

the normal (' = 0) the frequencies �0=2, �0=3 etcetera are also present.
Generally, of the n-th frequency there are n gratings all with a di¤erent
phase. So, the complete set of frequencies of a grating is given by

�1' = �0 cos';

�2' =
�0
2
cos';

�3' =
�0
3
cos'; (5.2)

�n' =
�0
n
cos':

They may be depicted in a polar diagram as given in �gure 7. We could call
�1' the principal frequency and �

n
' the n-th subharmonic.

Conclusion 5.1 A grating has a set of frequencies, of which the principal
frequency is the upper limit.
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Figure 7. Polar diagram of the spatial frequency of a grating.

Consider again the general case of two oblique gratings with spatial fre-
quencies �0 and �0 and � as the inter-ruling angle, sketched in �gure 8.
Remember that the bright moiré fringes connect the crossing points of the
gratings. Then the following relation must hold in the direction of the moiré
fringes

�0 cos' = �0 cos (� � ') ; (5.3)

if ' is the angle between the moiré fringes and the normal to grating �0. This
relation gives the direction ' of the moiré fringes and, as it is two-valued, of
the manifest as well as the latent fringes.

Figure 8. The relationship between �0, �0, � and ' of two oblique gratings.
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Conclusion 5.2 Two gratings will show a moiré pattern in a certain direc-
tion if the principal frequency or one of the subharmonics of one grating in
that direction is approximately equal to one of the frequencies of the other in
that direction (generalisation of conclusion 4.1).

Thus far we have been considering gratings of uniformly spaced straight
lines only. However, moiré fringes may appear with all sorts of symmetrical
patterns, eg, printers�halftone screens. They consist of a rectangular array
of tiny black squares or dots. They could be considered as being built up of
the crossing points of two orthogonal gratings of evenly spaced straight lines.
Also in this case, illustrated in �gure 9, we can de�ne a spatial frequency,
now as the number of dots encountered along a straight line in a direction
'. The frequency here is not a continuous function of ', but it has a value

Figure 9. The angular dependency of the spatial frequency of a rectangular
array.

for discrete ' only if a line in direction ' goes through a number of points.
Analogous to the array which can be thought of as the crossing points of
two orthogonal gratings, the polar diagram can be thought of as the crossing
points of two orthogonal polar diagrams like �gure 7. As it were, the circles
of �gure 7 are broken up into points as shown in �gure 10.
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Figure 10. Polar diagram of the spatial frequency of a rectangular array.

6 Group theory of the two-dimensional space

A printing screen and a crystal lattice in physics share an essential feature:
they are highly symmetrical. So, it is not too surprising that a theoretical
technique used in solid state physics, a branch of physics concerned with
crystals, can also be applied fruitfully here. This technique, group theory, is
an easy and elegant way to describe symmetry.
What is that, symmetry? Symmetry is the property of geometrical �gures

to repeat their parts or, more precisely, their property of coinciding with their
original position when in di¤erent position. Such self-coincidence may be of
two types: either the �gure shows self-coincidence as a result of a certain
movement, or the self-coincidence results from a mirror re�ection. It is clear
that only those parts which are in some way equal among themselves can
be repeated. Unlike objects cannot repeat one another. In the study of
symmetry it has long been the accepted practice to consider as being equal
not only such �gures as may be brought into self-coincidence with one another
by simple superposition, but also those which coincide as a result of mirror
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re�ection [5].
The second part of chapter 5 was meant as an early introduction to sym-

metry. There it was elucidated that a rectangular array of dots can be
interpreted as a superposition of two gratings with an inter-ruling angle of
1
2
�. Clearly, rotations of the array over �, 3

2
�, �1

2
�, ��, and �3

2
� produce

an array indistinguishable from the original. Such a symmetry is called a
4-fold symmetry, because rotations over multiples of 2�=4 leave the �gure
unchanged. Of course, other �gures can have other rotational symmetries.
In general, a pattern has an n-fold symmetry, if rotations over multiples of
2�=n in the plane of the �gure are symmetry operations of the pattern. The
centre of rotation is called an n-fold rotation centre. Similarly, a grating
of rulings as staged in the �rst chapters has a 2-fold symmetry because a
rotation over � leaves the grating indistinguishable from the original posi-
tion. Another instance is a corn lattice. It has actually the lowest symmetry
possible, a 1-fold symmetry, because it can only be rotated over 2�.
A further symmetry operation which leaves a rectangular array of dots

unchanged is a simple translation over the distance between any pair of dots.
Clearly, all possible translations of the array are vectorial sums of multiples
of the two principal distances.
The two symmetry operations mentioned, rotations and translations, are

e¤ected by a movement in the plane of the �gure. These are called direct
operations. A third symmetry operation called an indirect operation requires
a movement out of the plane. It is the mirror re�ection, which can be e¤ected
by a rotation over � out of the plane about a line in the plane. A mirror
re�ection followed by a translation along the two-fold rotation axis is called
a glide mirror re�ection.
Herewith all possible symmetry operations in the two-dimensional space

are given: translations, rotations and mirror re�ections. All two-dimensional
�gures one can think of have a symmetry which can be explained as a combin-
ation of translations, rotations and mirror re�ections. It appears on theoret-
ical grounds, not to be included here, that there is only a countable number
of such combinations possible. Each combination is called a group and can
be characterized and handled mathematically as a matrix. The total of all
groups may be subdivided into classes according to certain common proper-
ties.
Some further useful concepts are the order of a group and the fundamental

area of a �gure. The fundamental area is an area repeated in the �gure by the
symmetry operations. It may be �nite or in�nite. The number of elemental
symmetry operations of a group is called the order of the group. If the group
describing the symmetry of a �gure is of high order, it means that many
symmetry operations are applicable and that a fundamental area is repeated
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manifold. An extreme is to be found in a �gure with circle symmetry. The
centre of a circle is a 1-fold rotation centre, i.e. in all directions the same
pattern is found. The fundamental area is a line radiating from the centre.
On the other hand, a low order means that a fundamental area is not repeated
so often. An extreme is a completely arbitrary �gure like a corn lattice. No
part of the lattice is repeated anywhere; every part of the lattice is di¤erent.
Another example is written text, for which the same holds.
Of course, this is but a short introduction to group theory. There exists

a proliferation of books on the subject, of general content or dedicated to a
speci�c subject. A general introduction accompanied by reprints of authorit-
ative papers has been written by Cracknell [6]. Another book by Fejes Tóth
on regular �gures is of much importance to the present subject [7].
Fejes Tóth distinguishes 37 two-dimensional groups divided in three major

classes. The �rst class of 12 groups contains groups of pure rotation only;
they are translation-free. As can be seen very easily the fundamental area
must be in�nite. They consist necessarily of one n-fold rotation centre and
possibly mirror axes through the centre. The second class of 7 groups contains
groups of unidirected translations. The fundamental area is again in�nite.
The third class of 17 groups contains all other groups with at least two non-
parallel translations and possibly n-fold rotation centres, mirror and glide
mirror axes. It is interesting to note that theoretically 5-fold rotation centres
are not possible in any of the groups in this class.
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7 The moiré pattern predictable

What is the use of the concepts introduced in the previous chapter? It enables
us to describe in exact terms the symmetry of a �gure instead of using very
broad terms. As an illustration, the symmetry elements of a rectangular
array of dots are given in �gure 11. This particular constellation of rotation
centres and mirror lines is called W1

4 by Fejes Tóth. Every group has been
assigned a similar symbol. If the dots are not round or square but oblong or
triangular or other, the symmetry of the array is lower which means that the
number of symmetry elements (or order of the group) is less.

Figure 11. A rectangualar array of black dots and its symmetry elements
(group symbol W1

4).
� = 4-fold rotation centre
_
^ = 2-fold rotation centre
� = mirror axis

In the case of moiré fringes we have to do with at least two patterns of
a certain symmetry: the pattern of the banknote and the forger�s halftone
printing screen. Given the symmetry of both what will be the symmetry
of the moiré pattern? If two patterns are superposed, the symmetry of the
total is determined by the common symmetry elements in both. If both
patterns have no common elements at all, the resulting symmetry is the
lowest possible, a 1-fold rotation centre. This rule may be illustrated with
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the example of the �rst chapters. It was shown that the moiré pattern of
two gratings of rulings is again a grating of rulings. The symmetry elements
of a grating are two di¤erent sets of 2-fold centres, two sets of mirror axes,
and a translation system (group symbol F12). If two parallel gratings are
superposed, the common elements are the mirror axes orthogonal to the
rulings and further only those mirror axes of the other set and only those
2-fold rotation centres which are situated at distances given by (2.10) (also
group symbol F12). If one of the superposed gratings is slightly rotated with
respect to the other, the symmetry is lowered. The mirror axes disappear
and only the 2-fold rotation axes remain (group symbol W2). As was argued
before, a corn lattice has the lowest possible symmetry: no mirror axes, no
translations, no rotation centres except a trivial 1-fold centre (group symbol
E). Therefore a combination of a corn lattice and a pattern of an arbitrary
symmetry can produce a moiré pattern of the same trivial symmetry only.
Although in reproduction the corn lattice will undoubtedly change, it will do
so but in very minor details.

Conclusion 7.1 The symmetry of a moiré pattern is determined by the com-
mon symmetry elements of the primary patterns.

Conclusion 7.2 From the viewpoint of security it makes no sense incorpor-
ating corn lattices because they will not produce a moiré pattern of a con-
spicuous nature.

It may be well to point out that the symmetry of a pattern and the
symmetry of its frequency polar diagram are exactly the same as far as mirror
axes and rotation centres are concerned. Translations are transformed into
frequencies. (In terms of group theory: the point groups of both, subgroups
of the complete symmetry groups, are identical.) We have seen this already
in the cases of a grating and of a rectangular array of dots. So, instead
of using the primary patterns themselves to �nd the symmetry of the moiré
pattern, we may use their polar diagrams as well. It has the added advantage
that not only the symmetry of the moiré pattern may be predicted but also
the frequencies, that is the whole pattern. If the polar diagrams of the
primary patterns are superposed, eg, in the form of transparencies or in the
memory of a computer, the common symmetry elements and the common
frequencies may be selected easily. They comprise the polar diagram of the
moiré pattern. It is then su¢ cient to construct the inverse transform of this
polar diagram to �nd the moiré pattern. Instead of a trial-and-error method
this method may be employed to construct a primary pattern which gives
a moiré pattern thought suitable according to certain requirements. Such a
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procedure is formulated in the next chapter. There it is suggested to call in
the help of a computerized plotter such as a Coragraph.

Conclusion 7.3 The point group of a pattern and of its frequency polar
diagram are identical.

Conclusion 7.4 It is of advantage to design a screen trap in the spatial
frequency domain and not in the two-dimensional space of a banknote.

Implicitly, it was assumed up to now that patterns were unicoloured. This
does not have to be so. If one anticipates the colours a forger is most likely
to use, the conspicuity of a moiré pattern in a banknote may be enhanced
applying more than one colour chosen to match the forger�s colours. This
adds a fourth important attribute of a primary pattern to the three already
encountered: symmetry, frequency, and optical contrast.

Conclusion 7.5 The application of well-chosen colours in the screen trap of
a banknote may enhance the conspicuity of a moiré pattern.
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8 Directions for use

In the course of reasoning we have come to several conclusions important
enough to be set apart. It seems worthwhile to repeat them here and to
arrive at some �cooking recipe�how to invent an e¤ective screen trap.

2.1. The fringe width of the moiré pattern of two parallel gratings is inde-
pendent of the absolute value of the spatial frequencies of the gratings; it
depends merely on the di¤erence of both.

2.2. The spatial frequency of the moiré pattern of two parallel gratings is
equal to the di¤erence of the spatial frequencies of the gratings.

2.3. The spatial frequencies of both gratings may not di¤er too much in order
to obtain a suitably large fringe width, eg, a frequency di¤erence of 0:2mm�1

produces a fringe width of 5mm.

3.1. The fringe width of the moiré pattern of two oblique gratings with equal
frequency depends on the frequency and the inter-ruling angle. If the inter-
ruling angle is very small, the fringe width is inversely proportional to the
angle.

4.1. The fringe width of the moiré pattern of two oblique gratings with dif-
ferent frequencies depends on the frequencies and the inter-ruling angle. It
tends to a maximum for a very small inter-ruling angle and approximately
equal frequencies.

4.2. The contrast of the dark and bright moiré fringes in the moiré pattern
depends on the thickness of the primary gratings�rulings.

4.3. The maximum contrast in the moiré pattern will be found if the dark
and bright areas of each primary grating are equal.

4.4. From the viewpoint of security it makes not much sense incorporating
easily perceptible moiré fringes as part of a banknote design. The forger�s
printing screen is not likely to produce large changes of the moiré pattern.

5.1. A grating has a set of frequencies, of which the principal frequency is
the upper limit.

5.2. Two gratings will show a moiré pattern in a certain direction if the prin-
cipal frequency or one of the subharmonics of one grating in that direction is
approximately equal to one of the frequencies of the other in that direction
(generalisation of conclusion 4.1).

7.1. The symmetry of a moiré pattern is determined by the common sym-
metry elements of the primary patterns.
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7.2. From the viewpoint of security it makes no sense incorporating corn lat-
tices because they will not produce a moiré pattern of a conspicuous nature.

7.3. The point group of a pattern and of its frequency polar diagram are
identical.

7.4. It is of advantage to design a screen trap in the spatial frequency domain
and not in the two-dimensional space of a banknote.

7.5. The application of well-chosen colours in the screen trap of a banknote
may enhance the conspicuity of a moiré pattern.

It is possible now to sublimate the conclusions into a general procedure. It
should be remembered that a design is complete only when its four attributes
symmetry, frequency, line thickness, and colour are given.

1. Assume one of the two primary patterns not free to choose but given
by the circumstances (the forger�s pattern).

2. Construct the frequency polar diagram of this primary pattern.

3. Select those symmetry elements and frequencies present in the polar
diagram which are to be retained in the moiré pattern desired.

4. Add to these symmetry elements and frequencies any further elements
and frequencies one wishes to incorporate in the second primary pattern
(the screen trap of the banknote).

5. Transform the resulting polar diagram inversely into the second primary
pattern.

6. The second primary pattern has the required, built-in properties.

7. Choose suitable colours.

Of course, we don�t know beforehand the forger�s printing screen, but we
may assume that the forger is likely to use a common commercial halftone
screen of 4-fold symmetry. The polar diagram of such a screen has been given
in �gure 11 on an arbitrary frequency scale. It may be used as the result
of step 2 after adjustment of the frequency scale, in which case the actual
procedure starts at step 3.
The use of a computerized plotter, such as the Coragraph, could be of

great advantage in this procedure. Part of it could very well be automated
by means of a computer, particularly the transformation from real space into
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the spatial frequency domain, the inverse transformation, and the selection
of common elements. If a computerized plotter is available, the procedure
should be implemented into this machine. Ideally, the designer would do his
work at the console of the plotter in a conversational mode.
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9 The simplest solution to the problem

The problem we have set ourselves to pursue may be reformulated as fol-
lows. Invent a symmetrical pattern which exhibits suitably conspicuous moiré
fringes in combination with a rectangular array of dots irrespective of their
relative orientation and the frequency of the rectangular array.
So, there are two attributes of our pattern to adjust in the �rst place: the

symmetry and the spatial frequency. In order to ful�l the �rst requirement
of orientation independency, the simplest choice is undoubtedly circle sym-
metry. Concerning the frequency there is more. We require in fact a pattern
in which all frequencies from 0 to 1 are to be found. Let us call the spatial
frequency � again. The radii of the circles which must appear due to the
circle symmetry we call rn counting n from the centre outwards and starting
with n = 0 in the centre (r0 = 0). Slightly di¤erent from before we now
de�ne the frequency as half the reciprocal of the circle distance �r:

� (r) =
1

2�r
=

1

2 (rn � rn�1)
: (9.1)

Thus the frequency is not necessarily a constant any more; it may depend on
the distance r from the pattern�s centre. The simplest choice for the function
� (r) to range from 0 to 1 will be a linear function of r:

� (r) = kr; (9.2)

where k is a constant still to be de�ned. Now, the whole two-dimensional
space is divided up by the series of circles rn. For any particular r there are
always two nearest circles to be called rn�1 and rn such that

rn�1 5 r < rn: (9.3)

From the de�nition (9.1) and (9.3) it follows that � (r) cannot be a continuous
function of r as might be suggested by (9.2). Hence, we rewrite (9.2) in a
form approaching a linear function as near as possible:

� (r) =
k (rn + rn�1)

2
where rn�1 5 r < rn: (9.4)

Substitution in (9.1) yields

(rn � rn�1)�1 = k (rn + rn�1) ; (9.5)

or
(rn + rn�1) (rn � rn�1) =

1

k
; (9.6)
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or
r2n � r2n�1 =

1

k
: (9.7)

Multiplication by � leads to an unexpected result:

�r2n � �r2n�1 =
�

k
: (9.8)

Substitution of n = 1 determines the constant at the right side

�r21 � �r20 = �r21 =
�

k
; (9.9)

and so
�r2n � �r2n�1 = �r21: (9.10)

This recursive formula can be given in words as:

The area of each ring between any two succeeding circles is equal to the
area of the innermost circle r1.

In obeisance to conclusion 4.3 we have to choose the rings alternately col-
oured and uncoloured. The simplest choice of colour is black which interferes
with any colour. In �gure 12 the resulting screen trap, the simplest solution
of the problem, is given. Interestingly, it is not an uncommon device in optics
where it is known as a Fresnel-zone plate.

Figure 12. The simplest screen trap which invariably shows a conspicuous
moiré pattern with a printing screen of any symmetry in any direction.

The moiré interference pattern with a 4-fold printing screen is shown in
�gure 13. Note that the trap is repeated manifold. In accordance with con-
clusion 7.1 it has a 4-fold rotation centre and mirror axes but no translation
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symmetry. The four innermost images are due to the interference between
the principal frequency � (r) of the screen trap and the principal frequency of
the printing screen. Further outlying images are due to subharmonics of the
screen trap and to subharmonics of the printing screen (compare conclusion
5.2). The contrast of the images diminishes with increasing r. It is easy to
deduct that the distance between the centre r0 and one of the images is a
linear function of the frequency of the printing screen.

Figure 13. The moiré pattern of the pattern of �gure 12 with a 4-fold
printing screen.

It may be well to parenthesize that this screen trap provides more pro-
tection than was required in the formulation of the problem at the beginning
of this chapter. Because it has a circle symmetry it will interfere not only
with a 4-fold printing screen, but also with screens of any other symmetry,
surely except 1-fold symmetry.
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10 Further demonstrations

A Dutch artist well-known internationally for the great role symmetry played
in his drawings was the late Mr. M.C. Escher [8]. Although he did not
receive a formal mathematical training as he himself always pointed out, he
did incorporate almost all existing two- and three-dimensional groups into his
drawings. In 1950 he was invited to submit sketches for a new series of Dutch
banknotes. It may be regretted now that his ideas were deemed technically
infeasible at the time. As an example one of his designs is reproduced in
�gure 14 together with its moiré pattern.
(Note in the author�s handwriting in the typescript of this paper: As yet

un�nished waiting for print proofs.)
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